

AL624ET Linear Power Supply/Charger

Overview:

Altronix AL624ET Linear Power Supply / Charger converts a 115VAC 60Hz input to a low voltage DC output. This general purpose power supply has a wide range of applications for access control, security and CCTV system accessories that require additional power.

Specifications:

Agency Listing:

• CE European Conformity.

Input:

• 115VAC, 60 Hz 1.2A.

Output:

- 12VDC @ 1.2A supply current.
- Filtered and electronically regulated output.
- Short circuit and thermal overload protection.

Battery Backup:

- Built-in charger for sealed lead acid or gel type batteries.
- Maximum charge current 300mA.
- Automatic switchover to stand-by battery when AC Fails.
- · PTC battery protection.

Visual Indicators:

AC input and DC output LED indicators.

Features:

- Power supply/charger with enclosure and TP1620 plug-in transformer (16.5VAC/20VA).
- Fits one (1) 12VDC/7AH or two (2) 12VDC/4AH batteries.

Mechanical:

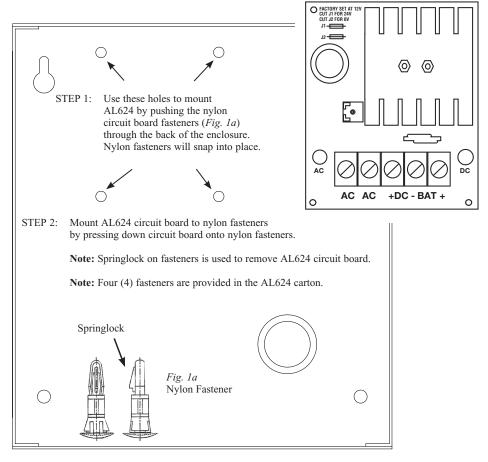
- Enclosure Dimensions (H x W x D approx.): 8.5" x 7.5" x 3.5" (215.9mm x 190.5mm x 88.9mm)
- Board dimensions (W x L x H): 2.5" x 3" x 1.5" (63.5mm x 76.2mm x 38.1mm)

Voltage Output/Transformer Selection Table:

Output	Voltage Selector (JMPR)	Transformer
12VDC @ 1.2A continuous supply current	Leave J1 and J2 Intact	16.5VAC / 20VA (Altronix model TP1620)

Installation Instructions:

- 1. Mount AL624 board in the enclosure (Fig. 1, pg. 2).
- 2. Unit is factory set for 12VDC.
- Connect TP1620 plug-in transformer to the terminals marked [AC] (refer to voltage output/transformer selection table). Use 18 AWG or larger for all power connections (Battery, DC output).
 Keep power-limited wiring separate from non power-limited wiring (115VAC / 60Hz Input, Battery Wires). Minimum 0.25" spacing must be provided.
- 4. Measure output voltage before connecting devices. This helps avoiding potential damage.
- 5. Devices to be powered should be connected to the terminals marked [+ DC] and [DC BAT], carefully observing polarity.
- 6. Connect battery to the terminals marked [BAT +] and [DC NEG] (battery leads included) **Note:** When batteries are not used, a loss of AC will result in a loss of output voltage.


Red (DC)	Green (AC)	Power Supply Status	
ON	ON	Normal operating conditions	
ON	OFF	Loss of AC. Stand-by battery is supplying power.	
OFF	ON	No DC output. Short circuit or thermal overload condition.	
OFF	OFF	No DC output. Loss of AC. Discharged or no battery present.	

LED Diagnostics:

Terminal Identification:

Terminal Legend	Function/Description	
AC/AC	Low voltage AC input (Voltage Output/Transformer Selection Table, pg.1).	
+ DC -	6VDC or 12VDC @ 1.2A continuous supply current.	
-BAT +	Stand-by battery connections. Maximum charge rate 300mA.	

Fig. 1

